Sfp1 and Rtg3 reciprocally modulate carbon source‐conditional stress adaptation in the pathogenic yeast Candida albicans
نویسندگان
چکیده
The pathogenicity of the clinically important yeast, Candida albicans, is dependent on robust responses to host-imposed stresses. These stress responses have generally been dissected in vitro at 30°C on artificial growth media that do not mimic host niches. Yet host inputs, such as changes in carbon source or temperature, are known to affect C. albicans stress adaptation. Therefore, we performed screens to identify novel regulators that promote stress resistance during growth on a physiologically relevant carboxylic acid and at elevated temperatures. These screens revealed that, under these 'non-standard' growth conditions, numerous uncharacterised regulators are required for stress resistance in addition to the classical Hog1, Cap1 and Cta4 stress pathways. In particular, two transcription factors (Sfp1 and Rtg3) promote stress resistance in a reciprocal, carbon source-conditional manner. SFP1 is induced in stressed glucose-grown cells, whereas RTG3 is upregulated in stressed lactate-grown cells. Rtg3 and Sfp1 regulate the expression of key stress genes such as CTA4, CAP1 and HOG1 in a carbon source-dependent manner. These mechanisms underlie the stress sensitivity of C. albicans sfp1 cells during growth on glucose, and rtg3 cells on lactate. The data suggest that C. albicans exploits environmentally contingent regulatory mechanisms to retain stress resistance during host colonisation.
منابع مشابه
Host carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen
The survival of all microbes depends upon their ability to respond to environmental challenges. To establish infection, pathogens such as Candida albicans must mount effective stress responses to counter host defences while adapting to dynamic changes in nutrient status within host niches. Studies of C. albicans stress adaptation have generally been performed on glucose-grown cells, leaving the...
متن کاملPromoter regulation in Candida albicans and related species.
Regulation of gene expression has been studied extensively in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Some, but by far not all, of the findings are also applicable to Candida albicans, an important ascomycete fungal pathogen of humans. Areas of research in C. albicans include the influence of key signal transduction cascades on morphology, and the response to host-generated infl...
متن کاملModulation of morphogenesis in Candida albicans by various small molecules.
The pathogenic yeast Candida albicans, a member of the mucosal microbiota, is responsible for a large spectrum of infections, ranging from benign thrush and vulvovaginitis in both healthy and immunocompromised individuals to severe, life-threatening infections in immunocompromised patients. A striking feature of C. albicans is its ability to grow as budding yeast and as filamentous forms, inclu...
متن کاملNitric oxide and nitrosative stress tolerance in yeast.
The opportunistic human fungal pathogen Candida albicans encounters diverse environmental stresses when it is in contact with its host. When colonizing and invading human tissues, C. albicans is exposed to ROS (reactive oxygen species) and RNIs (reactive nitrogen intermediates). ROS and RNIs are generated in the first line of host defence by phagocytic cells such as macrophages and neutrophils....
متن کاملPathogenic yeasts Cryptococcus neoformans and Candida albicans produce immunomodulatory prostaglandins.
Enhanced prostaglandin production during fungal infection could be an important factor in promoting fungal colonization and chronic infection. Host cells are one source of prostaglandins; however, another potential source of prostaglandins is the fungal pathogen itself. Our objective was to determine if the pathogenic yeasts Cryptococcus neoformans and Candida albicans produce prostaglandins an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 105 شماره
صفحات -
تاریخ انتشار 2017